Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 963
Filtrar
1.
ACS Chem Biol ; 18(12): 2564-2573, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38051515

RESUMO

GH127 and GH146 microorganismal retaining ß-l-arabinofuranosidases, expressed by human gut microbiomes, feature an atypical catalytic domain and an unusual mechanism of action. We recently reported that both Bacteroides thetaiotaomicron BtGH146 and Bifidobacterium longum HypBA1 are inhibited by ß-l-arabinofuranosyl cyclophellitol epoxide, supporting the action of a zinc-coordinated cysteine as a catalytic nucleophile, where in most retaining GH families, an aspartate or glutamate is employed. This work presents a panel of ß-l-arabinofuranosyl cyclophellitol epoxides and aziridines as mechanism-based BtGH146/HypBA1 inhibitors and activity-based probes. The ß-l-arabinofuranosyl cyclophellitol aziridines both inhibit and label ß-l-arabinofuranosidase efficiently (however with different activities), whereas the epoxide-derived probes favor BtGH146 over HypBA1. These findings are accompanied by X-ray structural analysis of the unmodified ß-l-arabinofuranosyl cyclophellitol aziridine in complex with both isozymes, which were shown to react by nucleophilic opening of the aziridine, at the pseudoanomeric carbon, by the active site cysteine nucleophile to form a stable thioether bond. Altogether, our activity-based probes may serve as chemical tools for the detection and identification of low-abundance ß-l-arabinofuranosidases in complex biological samples.


Assuntos
Aziridinas , Cisteína , Humanos , Glicosídeo Hidrolases/química , Aziridinas/química , Compostos de Epóxi
2.
Org Biomol Chem ; 21(22): 4553-4573, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37218299

RESUMO

Compounds featuring aziridine moieties are widely known and extensively reported in the literature. Due to their great potential from both synthetic and pharmacological points of view, many researchers have focused their efforts on the development of new methodologies for the preparation and transformation of these interesting compounds. Over the years, more and more ways to obtain molecules bearing these three-membered functional groups, which are challenging due to their inherent reactivity, have been described. Among them, several are more sustainable. In this review, we report the recent advances in the biological and chemical evolution of aziridine derivatives, in particular, the variety of methodologies described for the synthesis of aziridines and their chemical transformations leading to the formation of interesting derivatives, such as 4-7 membered heterocycles of pharmaceutical interest due to their promising biological activities.


Assuntos
Aziridinas , Aziridinas/química
3.
Angew Chem Int Ed Engl ; 62(25): e202303069, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37068049

RESUMO

Aziridines are highly valued synthetic targets in organic and medicinal chemistry. The organocatalytic synthesis of such structures with broad substrate scope and good diastereoselectivity, however, is rare. Herein, we report a broadly applicable and diastereoselective synthetic method for the synthesis of trans-aziridines from imines and benzylic or alkyl halides utilizing sulfenate anions (PhSO- ) as the catalyst. Substrates bearing heterocyclic aromatic groups, alkyl, and electron-rich and electron-poor aryl groups were shown to be compatible with this method (33 examples), giving good yields and high diastereoselectivities (trans : cis >20 : 1). Further functionalization of aziridines containing cyclopropyl or cyclobutyl groups was achieved through ring-opening reactions, with a cyclobutyl-substituted norephedrine derivative obtained through a four-step synthesis. We offer a mechanistic proposal involving reversible addition of the deprotonated benzyl sulfoxide to the imine to explain the high trans-diastereoselectivity.


Assuntos
Aziridinas , Aziridinas/química , Ânions/química , Iminas/química , Catálise , Estereoisomerismo
4.
Org Lett ; 25(1): 190-194, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36576235

RESUMO

A general method for synthesizing optically active, primary, secondary, and tertiary organofluorides was developed. This chiral pool synthesis utilized the skeleton of arabinose to generate diastereomerically pure 2-oxazolidinone-fused aziridines, which underwent ring opening with a fluoride anion. The adducts, polyoxygenated organofluorides, were useful precursors to various fluorinated compounds, such as fluorinated amino acids.


Assuntos
Aziridinas , Oxazolidinonas , Estrutura Molecular , Aziridinas/química , Estereoisomerismo , Aminas/química
5.
Org Biomol Chem ; 21(3): 465-478, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36508282

RESUMO

As a type of readily available small strained-ring heterocycle, meso-aziridines may undergo catalytic desymmetrizing transformations to empower the rapid construction of diverse nitrogen-containing structures bearing contiguous stereocenters, which have great relevance in natural product synthesis, drug development and the design and synthesis of chiral catalysts/ligands for asymmetric catalysis. This review outlines the advances achieved in the catalytic asymmetric desymmetrization of meso aziridines and highlights some promising avenues for further work in this realm.


Assuntos
Aziridinas , Estereoisomerismo , Aziridinas/química , Catálise , Ligantes
6.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293216

RESUMO

The ubiquitin-proteasome pathway (UPP) is the major proteolytic system in the cytosol and nucleus of all eukaryotic cells. The role of proteasome inhibitors (PIs) as critical agents for regulating cancer cell death has been established. Aziridine derivatives are well-known alkylating agents employed against cancer. However, to the best of our knowledge, aziridine derivatives showing inhibitory activity towards proteasome have never been described before. Herein we report a new class of selective and nonPIs bearing an aziridine ring as a core structure. In vitro cell-based assays (two leukemia cell lines) also displayed anti-proliferative activity for some compounds. In silico studies indicated non-covalent binding mode and drug-likeness for these derivatives. Taken together, these results are promising for developing more potent PIs.


Assuntos
Antineoplásicos , Aziridinas , Neoplasias , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Antineoplásicos/uso terapêutico , Aziridinas/farmacologia , Aziridinas/química , Neoplasias/metabolismo , Alquilantes , Ubiquitinas
7.
J Am Chem Soc ; 144(37): 17156-17164, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36094904

RESUMO

C4-Symmetrical dirhodium(II) tetracarboxylates are highly efficient catalysts for the asymmetric intermolecular aziridination of substituted alkenes with sulfamates. The reaction proceeds with high levels of efficiency and chemoselectivity to afford aziridines with excellent yields of up to 95% and enantiomeric excesses of up to 99%. The scope of the alkene aziridination includes mono-, di-, and trisubstituted olefins as well as the late-stage functionalization of complex substrates. The reaction can be performed on a gram-scale with a catalyst loading of 0.1 mol %. Our DFT study led us to propose a two-spin-state mechanism, involving a triplet Rh-nitrene species as key intermediate to drive the stereocontrolled approach and activation of the substrate.


Assuntos
Aziridinas , Ródio , Alcenos/química , Aziridinas/química , Catálise , Ródio/química , Estereoisomerismo
8.
J Am Chem Soc ; 144(35): 16164-16170, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35998388

RESUMO

Natural products containing an aziridine ring, such as mitomycin C and azinomycin B, exhibit antitumor activities by alkylating DNA via their aziridine rings; however, the biosynthetic mechanisms underlying the formation of these rings have not yet been elucidated. We herein investigated the biosynthesis of vazabitide A, the structure of which is similar to that of azinomycin B, and demonstrated that Vzb10/11, with no similarities to known enzymes, catalyzed the formation of the aziridine ring via sulfate elimination. To elucidate the detailed reaction mechanism, crystallization of Vzb10/11 and the homologous enzyme, AziU3/U2, in the biosynthesis of azinomycin B was attempted, and the structure of AziU3/U2, which had a new protein fold overall, was successfully determined. The structural analysis revealed that these enzymes adjusted the dihedral angle between the amino group and the adjacent sulfate group of the substrate to almost 180° and enhanced the nucleophilicity of the C6-amino group temporarily, facilitating the SN2-like reaction to form the aziridine ring. The present study reports for the first time the molecular basis for aziridine ring formation.


Assuntos
Aziridinas , Sulfatos , Aziridinas/química , DNA/química , Mitomicina
9.
J Org Chem ; 87(16): 10902-10907, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35947772

RESUMO

N-heterocycles are prevalent in pharmaceuticals and natural products, but traditional methods often do not introduce significant stereochemical complexity into the ring. We previously reported a Rh-catalyzed ring expansion of aziridines and N-sulfonyl-1,2,3-triazoles to furnish dehydropiperazines with excellent diastereocontrol. However, later studies employing ketone-containing carbene precursors showed that [3,9]-bicyclic aziridine formation competes with production of the desired heterocyclic scaffolds. In light of these surprising results, our initial findings were re-examined both experimentally and computationally to reveal how noncovalent interactions and restricted bond rotation in the aziridinium ylide intermediate promote this unexpected reaction pathway.


Assuntos
Aziridinas , Ródio , Aziridinas/química , Catálise , Ródio/química , Triazóis/química
10.
Acta Chim Slov ; 69(2): 261-270, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35861086

RESUMO

Optimized conditions for the synthesis of fully deprotected (2R)-aziridine containing dipeptides are described. Preparation of fully protected N- and C- terminal aziridine containing dipeptides was found to be straightforward and high yielding for the majority of compounds, whereas their full deprotection was possible only for C-terminal analogs. Deprotection of N-terminal derivatives using standard procedures of peptide chemistry was found difficult providing only mixtures of unidentifiable products. The described molecules have potential as building blocks in synthetic chemistry, in the chemical biology arena, as covalent modifiers, and as biomarkers.


Assuntos
Aziridinas , Dipeptídeos , Aziridinas/química
11.
Chemistry ; 28(60): e202201649, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35896443

RESUMO

The development of small-molecule covalent inhibitors and probes continuously pushes the rapidly evolving field of chemical biology forward. A key element in these molecular tool compounds is the "electrophilic trap" that allows a covalent linkage with the target enzyme. The reactivity of this entity needs to be well balanced to effectively trap the desired enzyme, while not being attacked by off-target nucleophiles. Here we investigate the intrinsic reactivity of substrates containing a class of widely used electrophilic traps, the three-membered heterocycles with a nitrogen (aziridine), phosphorus (phosphirane), oxygen (epoxide) or sulfur atom (thiirane) as heteroatom. Using quantum chemical approaches, we studied the conformational flexibility and nucleophilic ring opening of a series of model substrates, in which these electrophilic traps are mounted on a cyclohexene scaffold (C6 H10 Y with Y=NH, PH, O, S). It was revealed that the activation energy of the ring opening does not necessarily follow the trend that is expected from C-Y leaving-group bond strength, but steeply decreases from Y=NH, to PH, to O, to S. We illustrate that the HOMONu -LUMOSubstrate interaction is an all-important factor for the observed reactivity. In addition, we show that the activation energy of aziridines and phosphiranes can be tuned far below that of the corresponding epoxides and thiiranes by the addition of proper electron-withdrawing ring substituents. Our results provide mechanistic insights to rationally tune the reactivity of this class of popular electrophilic traps and can guide the experimental design of covalent inhibitors and probes for enzymatic activity.


Assuntos
Aziridinas , Aziridinas/química , Compostos de Epóxi/química , Nitrogênio , Fósforo , Cicloexenos , Enxofre , Oxigênio
12.
J Am Chem Soc ; 144(24): 10943-10949, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35674783

RESUMO

A new molecular rearrangement, the aza-Quasi-Favorskii rearrangement, has been developed for the construction of highly substituted aziridines. Electron-deficient O-sulfonyl oximes react readily with α,α-disubstituted acetophenone-derived enolates to furnish highly substituted aziridines via this unprecedented domino process. In-depth computational studies reveal an asynchronous yet concerted nitrenoid-type rearrangement pathway.


Assuntos
Aziridinas , Aziridinas/química , Metilmetacrilatos , Estrutura Molecular , Estereoisomerismo
13.
Nat Commun ; 13(1): 3341, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689000

RESUMO

N-functionalized aziridines, which are both useful intermediates and important synthetic targets, can be envisioned as arising from the addition of nitrenes (i.e., NR fragments) to olefinic substrates. The exceptional reactivity of most nitrenes, in particular with respect to unimolecular decomposition, prevents general application of nitrene-transfer to the synthesis of N-functionalized aziridines. Here we demonstrate N-aryl aziridine synthesis via 1) olefin aziridination with N-aminopyridinium reagents to afford N-pyridinium aziridines followed by 2) Ni-catalyzed C-N cross-coupling of the N-pyridinium aziridines with aryl boronic acids. The N-pyridinium aziridine intermediates also participate in ring-opening chemistry with a variety of nucleophiles to afford 1,2-aminofunctionalization products. Mechanistic investigations indicate aziridine cross-coupling proceeds via a noncanonical mechanism involving initial aziridine opening promoted by the bromide counterion of the Ni catalyst, C-N cross-coupling, and finally aziridine reclosure. Together, these results provide new opportunities to achieve selective incorporation of generic aryl nitrene equivalents in organic molecules.


Assuntos
Aziridinas , Alcenos , Aziridinas/química , Ácidos Borônicos , Catálise , Indicadores e Reagentes , Estereoisomerismo
14.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682596

RESUMO

Highly functionalized aziridines, including compounds with aromatic moieties, are attractive substrates both in synthetic and medical areas of chemistry. There is a broad and interesting set of synthetic methods for reaching these compounds. Aziridination represents the most explored tool, but there are several other more specific, less well-known, but highly promising approaches. Therefore, the current review focuses on recently described or updated ways to obtain 3-arylated aziridines via different non-aziridination-based synthetic methods, reported mainly since 2000. The presented methods belong to two main directions of synthesis, namely, cyclization of open-chain substrates and rearrangement of other heterocycles. Cyclization of open-chain substrates includes the classic Gabriel-Cromwell type cyclization of halogenated substrates with amines, base-promoted cyclization of activated aminoalcohols (or its analogues), and the oxidative cyclization of ß-dicarbonyls. Rearrangements of other heterocycles are presented as the Baldwin rearrangement of 4-isoxazolines, the cycloaddition of 1.3-dipoles or dienes to 2H-azirines, and the addition of C- and N-nucleophiles to the double bond of azirines.


Assuntos
Aziridinas , Azirinas , Aziridinas/química , Azirinas/química , Ácidos Carboxílicos , Ciclização , Cetonas/química , Estrutura Molecular , Estereoisomerismo
15.
Macromol Rapid Commun ; 43(17): e2200140, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35578395

RESUMO

Providing access to diverse polymer structures is highly desirable, which helps to explore new polymer materials. Poly(thioester sulfonamide)s, combining both the advantages of thioesters and amides, however, are rarely available in polymer chemistry. Here, the ring-opening copolymerization (ROCOP) of cyclic thioanhydride with N-sulfonyl aziridine using mild phosphazene base, resulting in well-defined poly(thioester sulfonamide)s with highly alternative structures, high yields, and controlled molecular weights, is reported. Additionally, benefiting from the mild catalytic process, this ROCOP can be combined with ROCOP of N-sulfonyl aziridines with cyclic anhydrides to produce novel block copolymers.


Assuntos
Aziridinas , Aziridinas/química , Polimerização , Polímeros , Sulfonamidas/química
16.
Org Lett ; 24(14): 2655-2659, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35377668

RESUMO

Copper catalyzed regioselective and stereospecific coupling between aziridines and in situ generated pyridine Grignard reagents is reported. This method provides ß-pyridylethylamines with diverse structures and functionalities from aziridines and iodopyridines. ß-Pyridylethylamines are potential scaffolds for the synthesis of biologically active compounds often found in pharmaceuticals. The synthesis of challenging chiral dihydroazaindoles was also achieved through mild one-pot reaction conditions via aziridine opening followed by nucleophilic cyclization.


Assuntos
Aziridinas , Cobre , Aziridinas/química , Catálise , Cobre/química , Estrutura Molecular , Estereoisomerismo
17.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335129

RESUMO

A short synthetic route to stereoselective access to C-glycosyl-aminoethyl sulfide derivatives has been developed through the reaction of tributhyltin derivatives of glycals with aziridinecarboaldehyde and the regioselective ring opening of a chiral aziridine with thiophenol. The absolute configurations of the resulting diastereoisomers were determined by 1H NMR spectroscopy.


Assuntos
Aziridinas , Aziridinas/química , Estereoisomerismo , Sulfetos
18.
Molecules ; 28(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36615437

RESUMO

A type of MCM-41 supported dicationic imidazolium ionic liquid nanocatalyst has been synthesized and found to be competent for the synthesis of 2-oxazolidinones through the sustainable chemical conversion of CO2 with aziridines. It was shown that the highest efficiency was achieved in the cycloaddition of a series of aziridines and CO2 in the presence of a catalytic amount of the solid catalyst MCM-41@ILLaCl4 under mild conditions. Merits of this meticulously designed protocol are the use of a novel supported ionic liquid catalyst, the easy work-up process, good to excellent yields, a short reaction time, and purification without column chromatography. Overall, the present protocol of synthesizing 2-oxazolidinones under cocatalyst- and solvent-free conditions using MCM-41@ILLaCl4 is promising for industrial applications.


Assuntos
Aziridinas , Líquidos Iônicos , Oxazolidinonas , Dióxido de Carbono/química , Líquidos Iônicos/química , Oxazolidinonas/química , Aziridinas/química , Catálise
19.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884949

RESUMO

N,N-Dimethylaziridine-2-carboxamides react with organolithium reagents yielding 2-aziridinylketones. The reaction with one equivalent of organolithium compound is selective to amide carbonyl at a low (-78 °C) temperature. These ketones, in reaction with organolithium reagents, give symmetrical and unsymmetrical aziridinyl carbinols. The usage of excess phenyllithium may serve as a special N-Boc-protecting group cleavage method for acid-sensitive substrates.


Assuntos
Aziridinas/química , Cetonas/química , Lítio/química , Metanol/química , Estrutura Molecular , Compostos Organometálicos/química , Estereoisomerismo
20.
Molecules ; 26(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684715

RESUMO

Aziridine derivatives involved in nucleophilic ring-opening reactions have attracted great interest, since they allow the preparation of biologically active molecules. A chemoselective and mild procedure to convert a peptide cysteine residue into lanthionine via S-alkylation on aziridine substrates is presented in this paper. The procedure relies on a post-synthetic protocol promoted by molecular sieves to prepare lanthionine-containing peptides and is assisted by microwave irradiation. In addition, it represents a valuable alternative to the stepwise approach, in which the lanthionine precursor is incorporated into peptides as a building block.


Assuntos
Alanina/análogos & derivados , Aziridinas/química , Cromatografia em Gel/métodos , Sulfetos/química , Alanina/química , Alquilação , Catálise , Cromatografia Líquida , Cisteína/química , Calefação , Micro-Ondas , Estrutura Molecular , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...